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Abstract. For an effective-spin system with 25+ 1 levels there are a number of possible
mappings of spin onto pseudo-fermion operators. We investigate the relative merits of
three of these methods by calculating to second order the dispersion relation for coupled
spin-phonon modes in crystals containing § = 1 effective spin impurities. We find that the
drone formalism quickly becomes intractable at higher spin values, as does the related
quasi-spin formalism we develop, in contrast with the iso-spin (or Abrikosov projection)
formalism.

1 litroduction

The success experienced in the application of the methods of quantum field theory to
wmry-body physics (e.g. see Abrikosov et af 1963) is less marked in the field of spin or
dustive-spin systems (e.g. systems with discrete excitation levels) because of the .
rater complexity of the rules required. This arises because the spins do not obey
ather fermion or boson commutation relations and thus the fermion or boson Wick’s
tearems as such do not apply.

Toovercome this difficulty, a number of approaches involving mappings of the spins
wiofermion (or boson) operators has evot@d. These in general allow Wick’s theorem
Dbergoovered at the expense of suitable operations to remove unphysical states that
&2y anise,

We discuss three such mappings which are the simplest known to us (table 1). In
ndms? § obeys spin, and a,,,, b;, fermion, commutation rules.

'l.he ls0-spin mapping, requiring just one fermion, was valuable in nuclear and
?i';gde physics (Lipkin 1965). It was introduced to many-body theory by Abrikosov

3) for later work on the formalism see Oppermann (1973), Verwoerd (1974) and

Table 1. Spin-fermion mappings. u ranges from —S$ to +S for iso-spin and 1 to 25 for
drones and quasi-spin; #=[S(S+1)—u(u+1)]'%; S~ =(sNH*.

Iso-spin Drone Quasi-spin
z + + 1 1
57 § Ka;, g, z (a3, —3) z 'Z'(a;;aaiu +b ;tbiu -1
- H
+ +
5 1:~ Fajpr1a), L a;‘:a(bju + b;,) z a;:,,b;;
» "
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references therein. Unphysical states (in the fermion Fock space) may be removedy
extending Abrikosov’s projection method (see § 2).

The drone formalism was introduced by Mattis (1965) and generalized by Spence;
* (1968) and Barnes (1972). For applications, especially to coupled spin-phonon .
tems, see Toombs and Sheard (1973) and their references.

The quasi-spin mapping (Lipkin 1965) has not previously been used to generage
diagram technique for spin systems. It arises in superconductivity (Anderson 1958)
atomic physics (Judd 1967) and crystal field theory (Wybourne 1973). In §2, w
develop the diagram method for general spin, using Barnes’ (1972) formulation for
drones as a guide.

In the following sections we discuss violation of the linked cluster theorem ang
calculation of S = 1 spin-phonon modes for all methods, concluding that in general the
Abrikosov method is preferable to either drones or quasi-spin for § >1

2. Formalism for general spin

Barnes’ (1972) contribution to generalizing the drone method was to recognize thatan
arbitrary physical spin-space may be written as a direct sum of product drone~fermion
spaces. This enabled him to find the trace over the spin states of an arbitrary spin
operator in terms of traces over the product spaces multiplied by suitable factors to
correct for the unphysical states. Finally he was able to show that if one used a diagram
approach, the diagram value for arbitrary spin could be obtained by multiplying the
appropriate $=3 diagram by a number of factors Kg(I) where [ is the number of
drone—fermion loops labelled with the same site label. We now give a parallel analyss
of quasi-spin.

For quasi-spin the operators for S =3 at a specific site (a7, ay, b7, b,) generate2
two-dimensional space spanned by basis vectors |11), [10), |01), |00) where the first ad
second labels give the eigenvalues of the number operators aya, by b, respectively.
Now by considering the operation of S*, $* expressed in terms of the fermion operators
acting on these basis vectors, one finds that [11), [00) correspond t
IS=3Ms=13), |S=3Ms=—3) respectively and both |10), |01) correspond 1
IS =0 M; = 0). Thus the fermion space contains one spin 5 subspace and fwo spin 21
subspaces. We write thisas S;,, = S;,,®2S,, where the tilde refers to the fermionsp
representation. Following Barnes, we find the spin states contained in any produdt
space (®S,,)" and by inverting these, we obtain the physical spin spaces as a directsi?
of fermion spaces. For example:

S1/2=(®$,,2)'©28,
$:=(®5,.)°04(®S,,,) @3S,
S3/2 = (®§l/2)366(®§1/2)2@ 10(®§1/2)1 @830

With the notation (®S-‘/2)2 = §1/2 ® §1/2 etc.
One obtains for an arbitrary spin operator 6,

(0)s=1/2 = Yl/z(l)(e)i
(0)s=1=Y1(2X0)3—4 Y (1}6);

etc, where (6)s.,, (8); denote the unperturbed thermal average of 4 with respect tot¢
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. {states and the states of the nth-fermion product space (®$,,,)" respectively, and
Yo(n)=Tra exp(—B¥#s)/Trs exp(—BHs).

zero-order spin Hamiltonian has the form #s = w,2;S;, the multiplicative factors
“Ys(n)={(f’f")"Zs]" with f*=[1+exp(xBw,/2)] ' and where Zs is the true
««op function for the § spin state. )
The value of the Feynman diagram corresponding to arbitrary spin S is to be
prainated by multiplying the value of the corresponding S =3 diagram by suitable

factors.
(diagram)s = Ks(i, p)Ks(m, q) . . . (diagram)s.,,,

shere, for each diagram involving several sites, there is a factor Ks(/, p) for each distinct

gewith {loops and p ‘free’ spin-state labels. For example K;( L p)=Y(2)I°P-4Yy(1).

Weshall find that, for certain diagrams, p is not necessarily equal to the power of the
ctspace as stated by Barnes,

In the Abrikosov formalism, the approach for removing the effect of unphysical
aates is somewhat different. Because the spaces considered here are not powers of
§=1spaces one cannot apply a method like that used for drones and quasi-spin except
fwthe case S=3. (This is effectively the approach of Yolin (1965) when he multiplies
bis diagrams by a factor Y” =[(1+cosh Bw,)/cosh BwoY, where p is the number of
ditinet spins represented in the diagram.) The conventional approach is to add an
wsergy ) to each fermion and then remove the effect of the unphysical multiparticle
sates at the end of the calculation by means of the projection

- 1 . A
P Trexp(—-ﬂ%s)xh.ge ’ M)

3 Linked cluster theorem

Keiter (1968, 1971) pointed out that the Abrikosov ‘freezing-out’ procedure (equation
(1) destroys the linked cluster theorem (LcT). We express this by

P{C}+ P{CD}
1+ P{D}

viere 9, 9° are the perturbed and unperturbed phonon propagators respectively. C

Fepresents _the connected diagrams with the exception of 9° and D the vacuum

with the exception of 1. '

’tsh?:;uo% (2) is also vali_d fqr drone§ and quasi-spin with the exception that P now
T i‘:ihcance of multiplying the diagram by the_ appropriate K(I, p) factors. The
. D) 4o ese cases glsg because the factors multiplying the disconnected diagrams
Dlvacuyy, legt faptonze into the parts that multiply the corresponding connected (C)

nsveqs ) diagrams.

Wderedain.go;lplmg proble_rP such as the spin—phonon coupled-modes problem to be
agam foop (1+P{D})™" can be expanded using the binomial theorem. Because
g, P (,S Dors do not factorize appropriately, the disconnected diagrams that

oty }—-P{C}. P{D}) dq pqt cancel. As an example of this, consider the
olin (1965) who was criticized by Schultz and Kwok (1972) for assuming

=9+ (2)
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LCT. As we have already mentioned, dealing with the Abrikosov technique for §s!
enabled Yolin to remove the effect of unphysical states by multiplying his diagrams by;
factor Y”. The first disconnected diagram to appear in the expansion arises in the
order and is indicated in figure 1 (using Yolin’s conventions). Although the Similar
diagrams with n, # n, cancel, the one with n; = n, does not, and. must be multiplieg bya
factor (Y- Y?); Yolin in his work presumably did not realize this. However, the
diagram does not affect his calculation of the lifetime of the coupled modes i
contributes no imaginary part, and thus his calculation agrees with other publisheg
results for the lifetime (e.g. see Toombs and Sheard 1973, Fidler and Tucker 197,
This diagram would affect only the fourth-order frequency shift.

In the case of drones, for S =1, the LcT is recovered; the K| »(l, p) factors are a
unity and hence the required factorization results.

Figure 1. A fourth-order unlinked diagram arising in the probiem of Yolin. Full lines
represent A® propagators (equation (4)) and wavy lines the phonon propagator.

4. Example: spin—phonon coupled modes for §=1

The relative usefulness of the previous three methods for §>% may be assessed by
applying each to a specific problem, namely the coupled-modes dispersion relation for
S§=1

Our model Hamiltonian is chosen as follows:

H= 5+ ,+ %,

%s=woZSf %’p=2 wkC:Ck
i k
#,=N"" 2 By explik. R)U[S]+ (S]] +5757)] ¢
J

where B, =3e(wow,)"/? is the coupling coefficient and u, = ¢, + ¢, is a lattice o
amplitude operator. The interaction term with coefficient ¢ is required to enable 2
phonon mode to couple all second-order states (e.g. Fidler and Tucker 1971).

We require the poles of the perturbed phonon propagator defined (follo¥%
Toombs and Sheard 1973, in their notation) by

D7) = “(Tf{l//k (T)ll’—k'(o)})-
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mmespondiﬂg unperturbed phonon propagator has Fourier coefficients diagonal in

14

2(l)k
0 Ym ek
Diliw,) (w0, w2

the procedures needed to develop a diagram expansion for 9 (iw,) see Abrikosov

1ol (1963).
"{;g;ow we evaluate the diagrams generated for the drone, quasi-spin and Abrikosov

gehniques individually.

i1, Drones

We define propagators,
8 u(1) = (T (T) by (0o
A1) =~(T A (7)a;, (0o

stere ¢, = by, +bj,., which have Fourier coefficients diagonal in g, " and in j, i
Aiw,) =2/iw, A%iw,)=1/(iw, ~ wo).

One obtains the second-order diagrams shown in figure 2 where the propagators
% A"and A° are represented by wavy, broken and full lines respectively.

\/\N(_\,‘\N\/
\ /’
N .
- -

(4)

(o) (6 (c)
(d) (e} D)

Figure 2. Second-order diagrams in the drone and quasi-spin formulation. Diagram (f)
should be omitted for quasi-spin.

1t necessary to distinguish figures 2(b, ) in this manner because, although the
i Sthen{selves all have the same value, the Kg(/, p) factors multiplying them are
fmeﬂt bothin magnitude and sign. This arises from the contraction of factors of the

!
;nEu'l ni’z <T;{aj”'1(71)¢iu1(71)ajy.'1(71)¢ju'1(71)¢ju'2(72)aiﬂ'2 (TZ)¢j';.:.'2(72)aj’;.4'2(72)})0'

Dml?felgaon the p'girs one 2chooses to contract, one can obtain products of Kronecker
Rasig (8 u12) (8,1)” (figure 2 (b)), 818 1,1, '[8,1,.. (figure 2(e)), which result
fog 2( Sum over j and a double sum over pi, pt1; Or like 88 128 128 150 o

¢.d)), which leave only single sums over j and . Thus figures 2(b, ¢) have
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factors like K,(1, 2) multiplying them while figures 2(c, d) have a factor K,(1, 1) apq

also a different sign. ‘
The diagram convention used in figure 2 is to label the outgoing stubs (u,, u') apg

ingoing stubs (g,, u2) in the same order at each vertex (see figure 3), and introduce the
twists to connect them. Evaluating the diagrams and their K factors, one obtains the
contribution to @y (iw,,) given in table 2.

2

M [

Figare 3, Labelling conventions for figure 2.

Table 2. Diagram contributions for drones. For brevity we define G.(og)=
exp(Buwo) exp(—Buwy), H.(wo)=exp(Buwo)xl, ° Hwo) = Hulwo)Hy(~wq), Z{wy=

G lwo) +1.
Figure Diagram K factor

12 2
2 3€“wouG-(wg) 2 _ﬁw_co?_
@ i) - w2l (o) Z(oo
2Ab—e) Elwio,  Gilw)H_(QuwolH_(~wo) 4 Jwo)
(iwp)* —4ws G—(wo)H., (2we)H.(—wy) Zlwg)
Jog
200 0 2 Zo)

4.2. Quasi-spin

We define propagators AJ,...(7) by equation (4) and also
Epitu(0) = ~(T{bju(1)b}, (0.

Again the Fourier coefficients are diagonal in j and p labels, but they have different
values since &; has a different fermion representation:

. 1
Ao 1 » =EO 1 = ———
(fer) (ieon) o, —we/2

The diagrams obtained can again be represented by those of figure 2 except that
broken and full lines now represent the A° and E° propagators respectively, and figure
2(f) does not appear. The evaluated diagrams and their factors are given in table 3.

4.3. Abrikosov

We define the propagator A, ;,(r) using equation (4). The corresponding Ut
turbed propagator has Fourier coefficients diagonalin j, j’ and u, u', butnowa functio?



Drones, quasi-spin or iso-spin? 193

i ibuti i-spi jati d in the caption to
Table 3. Diagram contributions for quasi-spin. Abbreviations are define:
able 2: X = {[exp(Bao) —exp(—wo/2)Iexp(Bwo) —exp(~3Bwe)}/ H.-Gwo).

Figure Diagram K factor
—%Ezwgwk G_(%wo) _ I (%wo)G+(%wo)

Aa) (iwn)*~ w2 I(wo) Z(wo)
+£%wam G_Gwy)X -4 I*Gewo)

20 [ 4w3) 1Goo Ha~Tuo H(w0) Z(wo)

dp
Aﬁ(iw,.)=:—L—“ w=0,=£1. (5)
1w, — jdg

Fone adds energy A to each fermion, pwo > pwo +A, in equation (5). One obtains the
fagamsshown in figure 4 in which the propagators A % ASand A?, are represented by
il fines above, on or below the level of the phonon propagator respectively. Figures
4a.b) correspond to figure 2(a), and figure 4(c) corresponds to figures 2(b-e).

(@) (6 (e

Figure 4. Diagrams for the Abrikosov formulation. Different orientations of the full line
distinguish the A9 (see text).

ofbvz;ating these but before having applied the limiting procedure of equation (1), we

2 2
figures 4(a, b): G—:)%U(/\)
m 0
(6)
2.2 2
figure 4(c): —2 & ok 15y

(ion)* —4ws

"hTF _UR)=1/exp(~Bwo) exp(~A) + 11— 1/[exp(Bwo) exp(—BA) +1].  Applying
Imiting procedure described in § 2 to the factor U(A) in equation (6), one obtains

Qwo)= G_(we)/ Z(wo) (7

PReisely the factor obtained when the contributions from the diagrams and K factors in
%2 and 3 are combined.

§ 5 we will explain why the method of § 4.3 (Abrikosov) is preferable to those of

4 o X
l(flm"e?) and 4.; (quasi-spin). First we complete the derivation of the coupled-
thuing Persion relation. Considering the second-order diagrams calculated as con-

t a self-energy I1, (iw,,)
1

@ i =
P s W

(8)
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then 9, (iw,) is given correct to second order. Thus, to second order,
4¢* )

+-
—w2 (lom)—4ws

1

Hk(iw,,,) = 52w§m,‘0(wo) ((iwm)z

This is substituted into equation (8), iw,, is analytically cont?nugd t0 , and they the
poles are obtained by equating the denominator to zero. This gives

(x—y)x=4)(x — 1)~ €’yQUo)l(x ~4)+4£*(x~1)]=0 o)

where x = (w/wo)%, y = (w/wo)*. By obtaining the three roots of .equation (9) for x asa
function of y one obtains the dispersion curve for the coupled spins. In figure 5 cyryes
are given for €? = 0-1 and € = 0-01, with £ = 1 and with 8 chosen such that Q(wg)=1,

301

0 [-0 2.0 3.0

W, /ey

Figare 5. Coupled-mode dispersion relation for §=1, evaluated for two strengths of
egupling. The full curve represents the solution for €2=0-01, and the broken curve for
€ =01.

5. Comparison of techniques

The main advantage of using the Abrikosov technique is that, in the evaluation of figie
4(c), only one integration is required. The equivalent diagrams for drones
quasi-spin (figures 2(b-e)) require three nested integrations. For general S,.the
Abrikosov approach would yield $(28 +1) diagrams, each requiring one integrato®:
the drone or quasi-spin technique would give 2§ diagrams, but a number of free
integration variables ranging from 1 (for the first diagram) to 45 —1 (for the last). The
Abrikosov technique also avoids the necessity of differentiating the diagrams (and the
factors) in figures 2(b-e). If one took a perturbation linear in spin (£ = 0 in equation (3)?
these comments would not apply, and the three methods would be coumt,’lc’
however this choice of interaction is less realistic for general spin in the physt
problems we have in mind.
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Thestandard basis operator technique of Yang and Wang (1974) could.be a serim}s
sitor to the Abrikosov method at higher spin values.. However, this method is
different in structure to the methods considered in fhls paper. ‘

we conclude that although drones, quasi-spin and Abnkosov pro;ef:tlon techmqqes

comparable for $=%, the first two methods quickly become intractable with

;gasing spin for realistic choices of the interaction Hamiltonian, and the advantages
d the Abrikosov technique render it the most attractive method.
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