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Abstract. For an effective-spin system with 2S-k 1 levels there are a number of possible 
mappings of spin onto pseudo-fermion operators. We investigate the relative merits of 
three of these methods by calculating to second order the dispersion relation for coupled 
spin-phonon modes in crystals containing S = 1 effective spin impurities. We find that the 
drone formalism quickly becomes intractable at higher spin values, as does the related 
quasi-spin formalism we develop, in contrast with the iso-spin (or Abrikosov projection) 
formalism. 

IBesuccess experienced in the application of the methods of quantum field theory to 
itay-body physics (e.g. see Abrikosov et ul 1963) is less marked in the fieid of spin or 
Wve-spin systems (e.g. systems with discrete excitation levels) because of the . 
peater complexity of the rules required. This arises because the spins do not obey 
&fermion or boson commutation relations and thus the fermion or boson Wick’s 
k m s  as such do not apply. 

Toovercome this difficulty, a number of approaches involving mappings of the spins 
@@fermion (or boson) operators has evo@d. These in general allow Wick’s theorem 
akmvered at the expense of suitable operations to remove unphysical states that 
aayarise. 

wedixuss three such mappings which are the simplest known to us (table 1). In 
*case S obeys spin, and ujp, bjw fermion, commutation rules. 

ko-spin mapping, requiring just one fermion, was valuable in nuclear and 
WdePhysia (Lipkin 1965). It was introduced to many-body theory by Abrikosov 
ll%%forlater work on the formalism see Oppermann (1973), Verwoerd (1974) and 

TaMe 1. Spin-fermion mappings. fi ranges from -S to +S for iso-spin and 1 to 2 S  for 
drones and quasi-spin; .Y~p=[S(S+l)-fi(p+1)]”~; S-=(S+)+. 

Iso-spin Drone Quasi-spin 

Si’ 
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references therein. Unphysical states (in the fermion FNk space) may be r e m w b  
extending Abrikosov's projection method (see § 2). 

The drone formalism was introduced by Mattis (1965) and generalized byspeoa, 
(1968) and Barnes (1972). For applications, especially to coupled spin-phononw 
terns, see Toombs and Sheard (1973) and their references. 

The q w i - s p i n  mapping (Lipkin 1965) has not previously been used to genmka 
diagram technique for spin systems. It arises in superconductivity (Anderson 1 g j ~ ,  
atomic physics (Judd 1967) and crystal field theory (Wyboume 1973). In $2, 
develop the diagram method for general spin, using Barnes' (1972) formuiatim fa 
drones as a guide. 

In the following sections we discuss violation of the linked cluster theorem a 
calculation of S = 1 spin-phonon modes for all methods, concluding that in generalthe 
Abrikosov method is preferable to either drones or quasi-spin for S >;. 

2. Formalism for general spin 

Barnes' (1972) contribution to generalizing the drone method was to recognize that an 
arbitrary physical spin-space may be written as a direct sum of product drone-fer" 
spaces. This enabled him to find the trace over the spin states of an arbitrary spin 
operator in terms of traces over the product spaces multiplied by suitable factors to 
correct for the unphysical states. Finally he was able to show that if one used a diagram 
approach, the diagram value for arbitrary spin could be obtained by multiplying the 
appropriate S =$ diagram by a number of factors & ( I )  where 1 is the number of 
drone-fermion loops labelled with the same site label. We now give a parallel analysis 
of quasi-spin. 

For quasi-spin the operators for S = $ at a specific site (a:, U b:, b, )  generate a 
twodimensional space spanned by basis vectors 11 l), IlO), IOl),  100) where the firstad 
second labels give the eigenvalues of the number operators a : ~ , ,  b:bl resped*b 
Now by considering the operation of S', S 2  expressed in terms of the fermion openton 
acting on these basis vectors, one finds that Ill), 100) correspond to 
Is=$ MS =$>, 1s =$ Ms = -4) respectively and both \lo), 101) correspond 10 
IS = 0 MS = 0). Thus the fermion space contains one spin $ subspace and WO spin 
subspaces. We write this as = S1,202+S0, where the tilde refers to the fermionSF 
representation. Following Barnes, we find the spin states contained in any produd 
space (@31/2)" and by inverting these, we obtain the physical spin spaces as adiream 
of fermion spaces. For example: 

Sl/2 = ( @ & / 2 ) ' 8 2 S ,  

SI = (@s1/2)'04(0s]/2)'03so 

s 3 / 2  = (@s1,2)3G6(@S1/J2@ lO(@S,,,)' @8S0 
with the notation (@Sl12)2 = SI,, @ 

(e)s=1/2= Y1/2(1)(0)i 

(e>,=, = Y1(2)~O)~-4YI(1)(~)i 

etc. 
One obtains for an arbitrary spin operator 0, 

where (%=I, (eh denote the unperturbed thermal average of e with rese t '& 
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lataand the states of the nth-fermion product space (OS1$ respectively, and 

IftbeHMrder spin Hamiltonian has the form %s = wozj$, the multiplicative factors 
le Y~(~) =[(ff-)”Z,]-’ with f” = [ 1 + exp( f @00/2)]-1 and where 2, is the true 
prPtioofunction for the S spin state. 

* d u e  of the Feynman diagram corresponding to arbitrary spin S is to be 
d d  by multiplying the value of the corresponding S =$ diagram by suitable 
m: 

-,foreach diagram involvingseveral sites, there is a factor &(I, p )  for each distinct 
&&hLloopsandp ‘free’ spin-state labels. For example Kl(l, p )  = Y,(2)Ip -4Y1(1). 
wehall find that, for certain diagrams, p is not necessarily equal to the power of the 
paduct space as stated by Barnes. 

In !he Abrikosov formalism, the approach for removing the effect of unphysical 
itstes is somewhat different. Because the spaces considered here are not powers of 
 spacesone one cannot apply a method like that used for drones and quasi-spin except 
brrathecase S =;. (This is effectively the approach of Yolin (1965) when he multiplies 
b b d q p m s  by a factor Y” = [(l +cosh pu0)/cosh &O]p, where p is the number of 
rsmnd spins represented in the diagram.) The conventional approach is to add an 
aqy X to each fermion and then remove the effect of the unphysical multiparticle 
statesat the end of the calculation by means of the projection 

Ipis 
YJn) = Tri, exp(-P%)/Trs exp(-B%). 

(diagramL =&U, p)&(m, 4). . . (diagram)ssl,2 

1 Med dafter theorem 

k(1968,1971) pointed out that the Abrikosov ‘freezing-out’ procedure (equation 
(I))deStroys the linked cluster theorem (LCT). We express this by 

P{ C} + P{ CD} 
1 + P{D) 

9 = v+ 
*re %!?J0 are the perturbed and unperturbed phonon propagators respectively. c 

the connected diagrams with the exception of 9’ and D the vacuum 

bution (2) is also valid for drones and quasi-spin with the exception that P now 
basthesignificance of multiplying the diagram by the appropriate Ks(~, p >  factors. The 
miailsin these cases also because the factors multiplying the disconnected diagrams 
‘e&@) do not factorize into the parts that multiply the corresponding connected (c)  
ammum (0) diagrams. 

weak-Wpling problem such as the spin-phonon coupled-modes problem to be 
§ 4, (1 +P{D})-’ can be expanded using the binomial theorem. Because 

factors do not factorize appropriately, the disconnected diagrams that 
WIt (e.g. p{c - }  - P i c } .  P{D}) do not cancel. As an example of this, consider the 
lpproach Of Yoh (1965) who was criticized by Schultz and Kwok (1972) for assuming 

with the exception of 1. 
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L=. As we have already mentioned, dealing with the Abrikosov technique for s-1 
enabled Yo]in to remove the effect of unphysical States by multiplying his diagrm$ 
factor YP. The first disconnected diagram to appear in the expansion arises in &e fourth 
order and is indicated in figure 1 (using Yolin’s conventions). Although the s& 
diagrams with n, # n2 cancel, the one with n, = n2 does not, and must be multip]idbya 
factor ( Y -  Y’); Yolin in his work presumably did not realize this. However, the 
diagram does not affect his calculation of the lifetime of the coupled modes as 2 
contributes no imaginary part, and thus his calculation agrees with other published 
results for the lifetime (e.g. see Toombs and Sheard 1973, Fidler and Tucker 1970). 
This diagram would affect only the fourth-order frequency shift. 

In the case of drones, for S=i ,  the LCT is recovered; the K1/2(I, p) factonarea 
unity and hence the required factorization results. 

B J McKenrie and G E Stedman 

Fgme 1. A fourth-order unlinked diagram arising in the problem of Yolin. Full rim 
represent A’ propagators (equation (4)) and wavy lines the phonon propagator. 

4. Example: spbphoaon coupled modes for S= 1 

The relative usefulness of the previous three methods for S >4 may be assessed b! 
applying each to a specific problem, namely the coupled-modes dispersion relation for 
s= 1. 

Our model Hamiltonian is chosen as follows: 

x = xs + xp + 2esp 

where Bk =$f(WOwk)”2 is the coupling coefficient and +k = ck + c?k is a lattice 
amplitude operator. The interaction term with coefficient 5 is required to enable a 
phonon mode to couple all second-order states (e.g. Fidler and Tucker 1971). 

we require the poles of the perturbed phonon propagator defined (fOuoMOg 
Toombs and Sheard 1973, in their notation) by 

. 
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spnding unperturbed phonon propagator has Fourier coefficients diagonal in 

Drones, quasi-spin or iso-spin? 

Ilrem 
kf: 

procedures needed to develop a diagram expansion for gk(iw,) see Abrikosov 

Below we evaluate the diagrams generated for the drone, quasi-spin and Abrikosov 
dol (1963). 

d q u f i  individually. 

ti. Drones 
We define propagators, 

(4) 
Ayp;j‘p*(7) = -(~~{~jr(T)~j‘,,(O)})o 

= -(T,{U~,(T)~~~,(~)})(~ 
bi6 = bj6 + b;, which have Fourier coefficients diagonal in p, p’ and in j ,  j ’ :  

Ao(io,) = 2/io, Ao(io,) = l/(io,, -wo). 

One obtains the second-order diagrams shown in figure 2 where the propagators 
$.A0 and A’ are represented by wavy, broken and full lines respectively. 

Figme 2. Second-order diagrams in the drone and quasi-spin formulation. Diagram (f) 
should be omitted for quasi-spin. 

It is necessary to distinguish figures 2(b, c) in this manner becaust, although the 
+sthemselves all have the same value, the Ks(l, p) factors multiplying them are 
aflentboth in magnitude and sign. This arises from the contraction of factors of the form 

bdingOn the pairs one chooses to contract, one can obtain products of Kronecker 
~~eS,,(Srl , ,)z(Sriri)z (figure 2 (b)) ,  Sji’[Splri]Z[S,ipz]2 (figure 2(e)), which result 
‘aQ@esum over j and a double sum over p l ,  pi;  or like Sjj,Srtr2Sr’lrzsri~ji26r’lrz 

k c s  2(cyd)), which leave only single sums over j and p. Thus figures 2(b, e )  have 
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facton like K, (1 ,2 )  multiplying them while figures 2(c, d )  have a factor ~, (1 ,1 )  
also a different sign. 

The diagram convention used in figure 2 is to label the outgoing stubs ( I L l ,  

ingoing stubs (pz, ph) in the Same order at each vertex (see figure 3), and introduce the 
twists to connect them. Evaluating the diagrams and their K factors, one obtains the 
contribution to Bk(io,,,) given in table 2. 

B J McKenzie and G E Stedmn 

P i  3. Labelling conventions for figure 2. 

Figure Diagram K factor 

4.2. Quasi-spin 

We define propagators AyF;j,,J~) by equation (4) and also 

E k : i t ' ( ~ )  = - (T , {b j~(T)b~~, (O)}>o.  
Again the Fourier coefficients are diagonal in j and p labels, but they have different 
values since Xs has a different fermion representation: 

1 
io, - 00/2' 

Ao(io,) = Eo(iwn) = 

The diagrams obtained can again be represented by those of figure 2 except that 
broken and full lines now represent the A' and Eo propagators respectively, and figure 
2 ( f )  does not appear. The evaluated diagrams and their factors are given in table 3* 

4.3. Abrikosov 

We define the propagator Aj,,,j,P.(~) using equation (4). The corresponding un?' 
Wbed propagator has Fourier coefficients diagonal in j ,  i' and p, p', but nowafunmn 



p = O , f l .  1 
1% - WO 

A:(iwn) = . 

jfwadhenergy A to each fermion, pmo+ p o + A ,  in equation (5 ) .  One obtains the 
@ramsshown in figure 4 in which the propagators AY, A: and A o1 are represented by 
Mlines above, on or below the level of the phonon propagator respectively. Figures 
4(a,b) correspond to figure 2(u), and figure 4(c) corresponds to figures 2(b-e). 

(0) (6) (C) 

Figme 4. Diagrams for the Abrikosov formulation. Different orientations of the full line 
distinguish the A: (see text). 

Evaluating these but before having applied the limiting procedure of equation (l), we 
obtain - -  

U(h) = l/[exp(-poo) exp(-ph) + 13- l/[exp(pwo) exp(-pA) + 11. Applying 
&limiting procedure described in 0 2 to the factor U(A) in equation (6), one obtains 

PredseiYthe factor obtained when the contributions from the diagrams and K factors in 

In $ 5  We will explain why the method of 0 4.3 (Abrikosov) is preferable to those Of 
"A ($ones) and 4.2 (quasi-spin). First we complete the derivation of the coupled- 
w.hWrsiOn relation. Considering the second-order diagrams calculated as con- 
%hngto a self-energy nk(iom) 

Q(@o) G - ( ~ o ) / z ( ~ o )  (7) 

2 and 3 are combined. 
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then 9&,, is given correct to second order. Thus, to second order, 
1 

II,(io,)=e200kQ(oo)( (io,) -ao 2 +  (io,) 4$ -4w0 .). 
This is substbted into equation (8), io, is andyticdy continued to U, and then the 
poles are obtained by equating the denominator to zero. This gives 

( x - Y ) ( x  - 4 ) ( ~ - l ) - ~ ~ y Q ( o o ) [ ( ~ - 4 ) + 4 5 ~ ( ~ - 1 ) ] = 0  19) 
where x = (o/o0)’, y = (oJo0)’. By obtaining the three roots of equation (9) for1 
function of y one obtains the dispersion curve for the coupled spins. In figure 5 curves 
aregivenforeZ=0.1ande2=O~Ol,with~= 1 andwithp chosensuch that Q(o,)=l. 

4% 
b 5. Coupled-mode dispersion relation for S = 1 ,  evaluated for two stren& d 
COupIhg. The full curve represents the solution for c2 = 0.01, and the broken curve fa 
2 = 0.1. 

5. Cornparkon of techniioes 

The main advantage of using the Abrikosov technique is that, in the evaluation of fip 
q c ) ,  only one integration is required. The equivalent diagrams for drones and 
quasi-spin (figures 2(b-e)) require three nested integrations. For general s, .the 
Abrikosov approach would yield S(2S  f 1) diagrams, each requiring one integrabon; 
the drone or quasi-spin technique would give 2s diagrams, but a number of * 
integration variables ranging from 1 (for the first diagram) to 4s - 1 (for the 1st). ”le 
Abrikosov technique also avoids the necessity of differentiating the diagrams (andtheK 
factors) in figures 2(b-e). If one took a perturbation linear in spin (5 = 0 in 
these comments would not apply, and the three methods would be a”arabk’ 
however this choice of interaction is less realistic for general spin in the PhYS id 
problems we have in mind. 
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"dad basis operator technique of Yang and Wang (1974) could be a serious 
#,tor to the Abrikosov method at higher spin values. However, this method is 
ddif[erent in structure to the methods considered in this paper. 

Weconclude that although drones, quasi-spin and Abrikosov projection techniques 
A ,parable for S =$, the first two methods quickly become intractable with 
M g s p i n  for realistic choices of the interaction Hamiltonian, and the advantages 
d&Abdcosov technique render it the most attractive method. 

B J McKenzie is grateful to the New Zealand University Grants Committee for a 
podgraduate Scholarship. 
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